Archive For The “Israeli Medicine” Category

Snoop Dogg Signs On As Spokesperson for Israeli Cannabis Startup Seedo

By |

Snoop Dogg Signs On As Spokesperson for Israeli Cannabis Startup Seedo

Israeli cannabis startup Seedo, the company that has developed a fully-automated indoor medical cannabis grow device, has signed US rapper and cannabis icon Snoop Dogg as a brand ambassador.

The Israeli company said in a statement on Tuesday that Snoop, né Calvin Cordozar Broadus Jr., will work with Seedo “on a variety of platforms” to “achieve optimal consumer awareness of this innovative technology.”

This article was originally posted by Featured article: Artificial Intelligence.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Founded in 2013, Seedo developed a fully automated and controlled indoor growing device, resembling a mini-fridge, for pesticide-free agriculture markets with a first focus on cannabis but with wider applications. The product analyzes growth and optimizes conditions for cannabis and other plants for home and commercial use. Monitoring occurs via smartphone app.

Seedo says the device can grow the cannabis plant from seed stage without human intervention over the course of 90 days, making for an independently run cannabis growing operation. The machine weighs between 120-140 pounds (54-63 kg) and measures 40 by 24.4 by 24.4 inches (101 x 62 x 62cm), with units listed at $2,400 each. Seedo says its AI-powered turnkey systems allow anyone, “from average consumers to large-scale producers” to grow a variety of plants at lab-grade quality “without prior experience or ample space.”

Snoop Dogg – whose hits include the track “Smoke Weed Every Day” – said: “Promoting a healthier lifestyle by providing my friends and communities with products that allow for growth in unused urban spaces is something I’m all the way down with.”

“Seedo creates cost savings and the opportunity for all people to benefit from agricultural technologies,” added the rapper, a mega-star and cannabis advocate whose marijuana use is a big part of his public image and his music. In 2012, when Snoop Dogg was briefly known as Snoop Lion, he told a Reddit audience in an AMA – ask me anything – post that he smokes about 81 blunts per day.

And in an interview last week, he revealed that he employs a full-time “blunt roller” who he pays between $40,000 to $50,000 per year, and whose sole responsibility is to prepare Snoop’s preferred marijuana delivery system.

His social media presence, with 36 million followers on Instagram alone, is filled with cannabis memes and references. Snoop Dogg is also a long-time cannabis entrepreneur. In 2015, he co-founded the media organization Merry Jane, which focuses on news about cannabis, and launched a new line of cannabis products called Leafs by Snoop offering a range of flowers, concentrates, and edibles.

Seedo CEO Zohar Levy said the company was “honored to partner with an industry icon like Snoop Dogg.”

“Snoop’s vast global following, industry influence and network reach will provide us an invaluable resource for Seedo as we continue to grow. The synergy between Seedo’s products and Snoop’s platforms is truly natural,” Levy added.

Read more »

Israeli Scientists Discover New Benefits of Cannabis

By |

Israeli Scientists Discover New Benefits of Cannabis

This article was originally sourced by The cannabis plant is one of humanity’s oldest cultivated crops and its use as medicine goes back nearly 5,000 years in civilizations throughout China, India, and the Middle East.

Nowadays, cannabis continues to be used for a wide range of medicinal purposes. CBD, or cannabidiol, a non-psychoactive chemical produced by the cannabis plant, is believed to comprise anti-inflammatory, anti-bacterial, and painkilling properties and its benefits including believing insomnia, anxiety, and nausea, and treating symptoms associated with multiple sclerosis, Parkinson’s disease, and autism in children

The disorder occurs when tissue that normally lines the uterus – the endometrium – begins to grow outside the organ. The displaced tissue becomes trapped inside the body, as it reacts as it should by thickening and then bleeding but, unlike in the uterus, it has no way out. This causes a build-up of scar tissue and adhesions which bring on a variety of symptoms, including painful menstruation and intercourse, excessive bleeding, and can even lead to infertility.

The new research into the use of cannabis to treat endometriosis is led by Jerusalem-based startup Gynica, a medical company licensed by the Israeli Health Ministry to develop cannabis-based products for the female body, in cooperation with Lumir Lab, the first and only licensed facility to research cannabis as it relates to women’s health. It is based at the Jerusalem Biotechnology Park at Hebrew University.

Gynica says current treatments for endometriosis – with painkillers and anti-inflammatory drugs – are often insufficient, as they only target the pain, not prevent it. 

“Today, the ways to treat endometriosis are either surgery or medications, such as a pill that suppresses the secretion the hormones or pain-killers. Cannabis is a very different mechanism. It has several compounds that can treat multiple symptoms of the disease,” Dr. Sari Sagiv, VP of Research and Development at Gynica, tells NoCamels.

Gynica’s research in a pre-clinical study focuses on how endometriosis interacts with the endocannabinoid system, the natural cannabis-like molecules produced by the human body. This system is involved “in a wide variety of processes, including pain, memory, mood, appetite, stress, sleep, metabolism, immune function, and reproductive function,” according to a series of short articles on UCLA Health.

Gynica references the British Journal of Pharmacology to note that, after the brain, the female reproductive system is the organ with the most endocannabinoid receptors, and notes that it believes “cannabinoids are the missing piece in the treatment of gynecological disorders.”

Gynica’s R&D team maintains that endometriosis is linked to a deficiency in the endocannabinoid system and that cannabinoid-based treatments may offer a new and improved solution for women who suffer from the condition.

The pre-clinical study is led by Professor Lumir Ondrej Hanus, the world-renown chemist who in 1992 isolated the first known endocannabinoid in the human brain, and for whom Lumir Lab is named. The study, Gynica says, has shown “promising results.”

A clinical trial, slated for 2020, will be led by Gynica’s principal investigator and global leading endometriosis specialist Dr. Yuval Kaufman.

Dr. Sagiv, who will run R&D on the trial, says she expects to have a validated product sometimes over the next year, with efforts currently directed towards discovering the optimal strain of cannabis for treating endometriosis. The research is supervised by Professor Moshe Hod, a world-recognized expert in the field of women’s health, president of the European Association of Perinatal Medicine (EAPM), and professor of Gynecology at the Tel Aviv University Faculty of Medicine.

“Endometriosis is a complex disease – to simply say ‘cannabis treats it’ is not enough,” she says. Gynica must find and understand the perfect combination and mixture of cannabis compounds. Once the optimal combination is found, Dr. Sagiv says a product will be released in several forms, including creams and patches.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Read more »

Israeli MedTech Takes On The Opioid Crisis

By |

Israeli MedTech Takes On The Opioid Crisis

When we hear of new artificial intelligence (AI) applications, especially those that seem a bit too “big brother” for the liking of many, this story should better represent the true intent of libertarian paternalism, or the ethical framework designed to provide optimal decision making while still allowing for freedom of choice.

Medasense Biometrics, a company that has developed a patented technology platform to objectively assess the physiological response to pain (nociception), and which could ebb opioid addiction post-surgery.

See featured article on artificial intelligence.

This company has come up with a portable pain sensor that can tell doctors how much pain a patient is feeling and how much pain care they need. Using artificial intelligence algorithms and real-time data, the company’s easy-to-use system is already changing precision medicine, allowing for personalized and optimized pain care to ensure that the patient doesn’t get too many opioids.

“Unlike other aspects of anesthesia, there have not been good monitors of painful stimuli during surgery, and how patients react. It has thus been challenging for anesthesiologists to know how much medication is needed to blunt surgical pain in individual patients. The problem is that too much or too little pain medication (usually narcotics) can be harmful. A monitor that accurately measures how patients react to surgical pain might therefore help guide clinical care,” Dr. Daniel Sessler, the founder and director of the Outcomes Research Consortium (the world’s largest clinical anesthesia research group), tells NoCamels.

Indeed, the average rate of later opioid dependence and addiction among surgical patients hovers at 12 percent, according to a US national pain report.

“We know that the first exposure to opioids for a large number of people addicted to opioids occurs after surgery. Thus it is logical that if we have a technology that allows us to titrate opioids more carefully during surgery, we can potentially decrease the habituation to opioid analgesia that the body develops during and immediately after surgery,” Dr. Frank J. Overdyk, an anesthesiologist in Charleston, South Carolina, tells NoCamels in an email exchange.

In fact, a recent study published in a peer-reviewed American Society of Anesthesiologists journal showed a 30-percent reduction in remifentanil consumption (a potent, short-acting synthetic opioid analgesic drug that is given to patients during surgery to relieve pain and as an adjunct to an anesthetic) in procedures performed with the Israeli company’s platform.

The pain sensor tech has been part of a number of clinical studies across the world including in the US, Europe, Canada, Japan, Israel, and Chile.

“For the first time in the history of surgery and anesthesia will we have the ability to measure painful stimuli during surgery directly. Currently, we have had to use indirect measures of pain such as high heart rate, pupil dilation and sweating as signs of pain. The NOL will allow us to titrate pain medicines more precisely and early studies suggest we will be able to use less opioid pain medicine. For patients, this means fewer side effects such as nausea, vomiting, itching, constipation and inability to void,” says Overdyk.

How smiley-faces warned of the need for new pain assessment

Founder and CEO of Medasense, Galit Zuckerman-Stark grew up in operating rooms, watching her mom, a nurse, care for patients.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Read more »

Israeli Researches Print 3D Heart Made Of Human Tissue

By |

Israeli Researches Print 3D Heart Made Of Human Tissue

Just when we thought that the only absolute things in life are “death and taxes,” medical and scientific breakthroughs may be able to forestall the former indefinitely. Of course, we’re not there yet but not long from now it’s not hard to imagine the swapping out of vital organs much like car parts are replaced with factory new ones all the time.

And just like that, the Ship of Theseus thought experiment becomes remarkably relevant. In the metaphysics of identity, the ship of Theseus is a thought experiment that raises the question of whether a ship—standing for an object in general—that has had all of its components replaced remains fundamentally the same object.

All other things being equal, especially the presumption that our empirical history is retained by our brain (or a replacement… is that even possible?), we would still be the continuous meat package for this single irreducible component.

But enough of my meanderings. The excerpts that follow were originally reported by, my “go to” resource for Israeli tech and innovation news.

The future is here. In a world first, Israeli scientists have created a live heart in a revolutionary new 3D printing process that combines human tissue taken from a patient.

In November, Tel Aviv University researchers said they invented the first fully personalized tissue implant engineered from a patient’s own biomaterials and cells, paving the way for new technology that would make it possible to develop any kind of tissue implant from one small fatty tissue biopsy.

Now, these same researchers created a real heart using their innovative process at the Laboratory for Tissue Engineering and Regenerative Medicine led by Professor Tal Dvir, an associate professor at Tel Aviv University’s Department of Molecular Microbiology and Biotechnology.

“This is the first time anyone anywhere has successfully engineered and printed an entire heart complete with cells, blood vessels, ventricles and chambers.”

Professor Dvir, Tel Aviv University’s Department of Molecular Microbiology and Biotechnology

The process involved taking fatty tissue, after which the cellular and a-cellular materials were then separated. While the cells were reprogrammed to become pluripotent stem cells and efficiently differentiated to cardiac or endothelial cells, the extracellular matrix (ECM), a three-dimensional network of extracellular macromolecules, such as collagen and glycoproteins, were processed into a personalized hydrogel that served as the printing “ink,” Tel Aviv University said in a statement.

The differentiated cells were then mixed with the bio-inks and were used to 3D-print patient-specific, immune-compatible cardiac patches with blood vessels and, subsequently, an entire, tiny heart.

Cardiovascular diseases are the number one cause of death worldwide, according to the World Health Organization. In 2016 alone, an estimated 17.9 million people died from heart diseases, a majority due to heart attack and stroke.

Heart transplantation is currently the only treatment available to patients with end-stage heart failure. And with a shortage of heart donors, this scientific breakthrough development may blaze a trail in the medical world, paving the way for a potential revolution in organ and tissue transplantation.

“This heart is made from human cells and patient-specific biological materials. In our process, these materials serve as the bioinks, substances made of sugars and proteins that can be used for 3D printing of complex tissue models,” Professor Dvir said.

“People have managed to 3D-print the structure of a heart in the past, but not with cells or with blood vessels. Our results demonstrate the potential of our approach for engineering personalized tissue and organ replacement in the future,” he added.

Tel Aviv University explained that in the current method for tissue engineering for regenerative medicine, cells are isolated from the patient and cultured in biomaterials, synthetic or natural, derived from plants or animals, to assemble into a functional tissue. After transplantation, they may induce an immune response that can lead to rejection of the implanted tissue.

Patients who are recipients of engineered tissues or other implants often require treatment with immuno-suppressors, which can endanger the health of the patient.

With this development, “patients will no longer have to wait for transplants or take medications to prevent their rejection. Instead, the needed organs will be printed, fully personalized for every patient,” the university said in a statement.

Featured article. Artificial Intelligence Disrupts MedTech Radiology.

The process was outlined in an article titled “3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts” published on Monday in “Advanced Science,” a peer-reviewed scientific journal.

Research for the study was conducted jointly by Professor Dvir, Dr. Assaf Shapira of TAU’s Faculty of Life Sciences, and Nadav Moor, a doctoral student in the lab.

In their study, the team worked with two models: one made from human tissue, and another made from rat tissue.

In the press briefing, Professor Dvir emphasized that the technology “won’t be available in clinics or hospitals tomorrow, we are in the very early stages of this technology.” But, he said, in about a decade, as 3D printing technology evolves, hospitals and clinics may have these printers on site.

Professor Dvir explained that the heart, currently the size of that of a rabbit’s, will need to undergo a maturing process in bioreactors – a system that supports a biologically active environment – to keep the cells alive and grow them to accommodate a life-sized heart, while “teaching” them to organize and interact with each other and achieve pumping ability.

Currently, he said, “the cells are capable of contracting separately but not pumping.”

The printing process takes between 3-4 hours, but the maturing process takes about a month, after which the scientists will begin testing on small animals such as rabbits and rats.

They hope this will happen in a year or two.

Dr. Shapira tells NoCamels that the scientists will 3D-print hearts for these respective animals from their own tissues after which they will conduct transplants and begin clinical trials.

The potential is great. According to Professor Dvir, the use of “native” patient-specific materials is crucial to successfully engineering tissues and organs.

“The biocompatibility of engineered materials is crucial to eliminating the risk of implant rejection, which jeopardizes the success of such treatments,” he said. “Ideally, the biomaterial should possess the same biochemical, mechanical and topographical properties of the patient’s own tissues. Here, we can report a simple approach to 3D-print thick, vascularized and perfusable cardiac tissues that completely match the immunological, cellular, biochemical and anatomical properties of the patient.”

But there are also significant hurdles. First is cost. Professor Dvir says the printing process for the heart cost “a few thousand shekels” in a lab environment, but should the technology be commercialized in the future, it will likely be expensive.

The scientists will have to print a human-sized heart and that could pose a challenge. “How do you print all the cells and blood vessels for a heart?” asked Professor Dvir in reference to the resolution limitations currently of 3D printers.

“We must take into consideration that 3D printing technology is also developing,” he said.

“Maybe, in 10 years, there will be organ printers in the finest hospitals around the world, and these procedures will be conducted routinely,” he said.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Read more »

Is Israel Becoming Cannabis Nation?

By |

Is Israel Becoming Cannabis Nation?

Over a thousand visitors from forty-five countries converged on Tel Aviv for CannaTech, the medical Cannabis (marijuana) conference. Participants from the biotech, pharmaceutical, and medicine were all ears (and eyes) at what appears to be the world’s largest medical cannabis conference, giving Israel yet another designation of Cannabis Nation.

The following content has been exported from where this story was originally reported.

According to Kaye, the Israeli government’s inhibition of cannabis business in the past, which he says was due to fear of the negative image associated with exporting “guns, cannabis, and other drugs,” made medical cannabis a “heavily illegitimate market.” Despite earlier government backlash, however, continuous pressure and a greater number of resources devoted to medical cannabis research have allowed for CannaTech’s consistent growth since its inception in 2015.

As perhaps the chief representative of the Israeli medical cannabis market, CannaTech’s development signifies Israel’s quick emergence as a global industry leader.

“We’re uniquely placed in innovation, ag-tech, water tech, and now canna-tech in order to propel us into what is the next massive industry […] When you add in the culture of funding startups, and the ability to both black market test and sell your product to an audience, that creates an environment that’s fantastic for a growing ecosystem,” Kaye states.

He also cites Israel’s advanced hospitals, universities and claim to the highest number of PHDs per capita as additional contributors to the country’s potential for sustained success in the industry and the world’s primary innovator and producer of medical cannabis.

“Patients who need medicine now have to get it from somewhere – they can get it from Canada or they can get it from Israel. Those are your options in the world. Canada’s leading and Israel will catch up.”

In January, Israel’s Ministry of Health gave its long-awaited approval for the medical cannabis export law, paving the way for the country to become a leading medical cannabis exporter, and participant in the global cannabis sector. Although law enforcement officials have not yet established a framework through which new international cannabis trade will be executed, the market has already begun to feel the law’s effects. “We are talking about a $2 billion industry next year that, last year, was also a $2 billion industry, it just wasn’t legal,” Kaye says.

By 2029, the global cannabis industry is expected to soar to $33 billion, which Kaye believes is necessarily an underestimate: “It’s the fastest growing industry in the world with more consumers than we know about because they have all been in the closet. So, we don’t really know the size, but it’s way bigger than whatever we think it’s going to be.”

Despite the growing support for medical cannabis within Israel and beyond, there are those who still doubt the plant’s positive potential, arguing that it may decrease societal productivity. Kaye urges doubters to reject “uneducated stigma that they’ve been taught for 60 years” and to instead, turn to cannabis research.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Read more »

Using Artificial Intelligence on Facial Recognition Detects Rare Genetic Disorders

By |

Using Artificial Intelligence on Facial Recognition  Detects Rare Genetic Disorders

A new technological breakthrough is using AI and facial analysis to make it easier to diagnose genetic disorders. DeepGestalt is a deep learning technology created by a team of Israeli and American researchers and computer scientists for the FDNA company based in Boston. The company specializes in building AI-based, next-generation phenotyping (NGP) technologies to “capture, structure and analyze complex human physiological data to produce actionable genomic insights.”

Portions of this article were originally reported in

DeepGestalt uses novel facial analysis to study photographs of faces and help doctors narrow down the possibilities. While some genetic disorders are easy to diagnose based on facial features, with over 7,000 distinct rare diseases affecting some 350 million people globally, according to the World Health Organization, it can also take years – and dozens of doctor’s appointments – to identify a syndrome.

“With today’s workflow, it can mean about six years for a diagnosis. If you have data in the first year, you can improve a child’s life tremendously. It is very frustrating for a family not to know the diagnosis,” Yaron Gurovich, Chief Technology Officer at FDNA and an Israeli expert in computer vision, tells NoCamels. “Even if you don’t have a cure, to know what to expect, to know what you’re dealing with helps you manage tomorrow.”

DeepGestalt — a combination of the words ‘deep’ for deep learning and the German word ‘gestalt’ which is a pattern of physical phenomena — is a novel facial analysis framework that highlights the facial phenotypes of hundreds of diseases and genetic variations.

According to the Rare Disease Day organization, 1 in 20 people will live with a rare disease at some point in their life. And while this number is high, there is no cure for the majority of rare diseases and many go undiagnosed.

“For years, we’ve relied solely on the ability of medical professionals to identify genetically linked disease. We’ve finally reached a reality where this work can be augmented by AI, and we’re on track to continue developing leading AI frameworks using clinical notes, medical images, and video and voice recordings to further enhance phenotyping in the years to come,” Dekel Gelbman, CEO of FDNA, said in a statement.

DeepGestalt’s neural network is trained on a dataset of over 150,000 patients, curated through Face2Gene, a community-driven phenotyping platform. The researchers trained DeepGestalt on 17,000 images and watched as it correctly labeled more than 200 genetic syndromes.

In another test, the artificial intelligence technology sifted through another 502 photographs to identify potential genetic disorders.

DeepGestalt provided the correct answer 91 percent of the time.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Indeed, FDNA, a leader in artificial intelligence and precision medicine, in collaboration with a team of scientists and researchers, published a milestone study earlier this year, entitled “Identifying Facial Phenotypes of Genetic Disorders Using Deep Learning” in the peer-reviewed journal Nature Medicine.

Read more »

Neurowellness: A New Way To Manage Stress

By |

Neurowellness: A New Way To Manage Stress

Move over mindfulness meditation. Neuroscience is now beginning to map what’s going on inside your brain when you’re feeling good, and not-so-good, to help promote mental and emotional wellness. It’s a logical augmentation of mindfulness meditation which has become very popular recently although it’s been around for thousands of years.

The remainder of this post was originally reported by

Brain researchers across the world are increasingly beginning to study the link between our body’s control center and emotional health. In recent years, neurological wellness (or neuro-wellness), an emerging field focused on emotional wellbeing, mood enhancements and innovation and technology, has also garnered attention.

“Because we’re living longer, our focus is starting to shift toward well-being,” Bill Gates wrote last month as part of a piece reflecting on technological breakthroughs for the MIT Technology Review. “I think the brilliant minds of the future will focus on more metaphysical questions: How do we make people happier? How do we create meaningful connections? How do we help everyone live a fulfilling life?”

Earlier this month, this question was one of the main focuses at the Fourth International BrainTech Conference in Tel Aviv, a two-day global meeting point for leading scientists, clinicians and entrepreneurs who engage in brain research and technology.

While the power of a positive mindset has been praised as key, there is emerging scientific backing for the thesis that mood is directly linked to the mental processes in our brain. Moshe Bar, director of the Leslie and Susan Gonda Multidisciplinary Brain Research Center at Bar-Ilan University, presented a study that found that optimistic people show better cognitive work on associations, creativity, memory and a broader scope of attention than those with a more depressed outlook. People with a positive mindset, he indicated, are better able to foresee what’s coming next and to minimize perceived uncertainty. Thus, improving the mood of individuals can prompt our brain to activate processes that will make us feel well.

The brain’s powerful capacities are well documented, but can the mind heal the body? Neuroscientists Dr. Talma Hendler, of Tel Aviv University, and Dr. Asya Rolls, of the Technion, are currently collaborating on a study on brain-body interaction. Their initial findings have shown that activating a neural mechanism in our brain’s reward system may boost the immune system.

Can technology support us emotionally? More and more entrepreneurs recognize the potential of such evidence for transforming our mind and body. Products for emotional wellness are currently flooding the market. But can technology really support us emotionally?

“Yes,” says Nichol Bradford, executive director and co-founder of The Transformative Technology Lab (USA), who believes that we are standing at the threshold of a new era of human flourishing. “I think there is a great deal of range and possibility in using technology to teach us how to relate to the way we feel. Emotions and self-regulation are trainable and teachable skills,” she tells NoCamels.

According to Bradford, transformative technologies for well-being will not only address mental health and happiness, they are also entering the future of workplaces, improving emotional intelligence and social skills. Ultimately, they will lead to enhanced mental and emotional capacity.

Bradford calls this the “future of human possibilities” in which technology helps people develop their full potential. “The point is … to establish a new level of mental and emotional health.“

An example of this is TRIPP, a Los Angeles-based software company that developed a mood-on-demand platform powered by virtual reality. Like a combination of video games and meditation, “taking a ten-minute TRIPP” can puts users in a state of mindfulness by creating a deep immersive, brain-stimulating experience. CEO and co-founder Nanea Reeves believes that mental health is the market for VR. After launching their product for corporate wellness programs, the company’s goal is to enter the therapeutic market, where TRIPP could be used for treatments like addiction recovery, he tells NoCamels.

An Israeli product that has already been deployed in hundreds of clinics worldwide is Myndlift, a device for personalized neuro-therapies. When looking for ways to improve ADHD symptoms without medication, Myndlift CEO Aziz Kadan discovered the potential of neurofeedback. Combining a sensory headset with a training program, Myndlift responds to changing brainwave patterns and is able to change and balance brain activation. The devices were featured at the conference.

Meanwhile, NYX Technologies, a young Israeli neurotech startup, is developing a platform for sleep management and stress reduction. A headset reads a user’s brain patterns and adapts its function individually for falling asleep faster, getting into deeper sleep and waking up refreshed. Currently, the Haifa-based company is conducting beta tests.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Read more »

First Lab-Grown Bone Implant Patient Competes In Triathlon

By |

First Lab-Grown Bone Implant Patient Competes In Triathlon

Israeli Biotech company Bonus Biogroup has created Bonofill, a first-of-its-kind tissue-engineered bone graft process that produces human bone from the patient’s own cells.

The following excerpts were first reported by

When Danny Yaakobson, an extreme sports enthusiast, suffered a serious leg injury following a car accident two years ago, he did not imagine he would become the world’s first patient to receive a lab-grown bone implant made from his own fat cells to replace a missing section of his shinbone, let alone take part in an Israman triathlon just a year following the surgery.

But that is exactly what happened. While traveling abroad in 2017, Yaakobson suffered a road accident and nearly lost his whole leg. The injury was serious and painful, he says, but his doctor told him about a clinical trial that would change the course of his life.

“The doctor said that there wasn’t much to lose anyway [in participating in the clinical trial], that the situation was not so good as it was,” Yaakobson explains in a video interview provided by Bonus BioGroup.

During the process, human fat tissue is extracted from the patient. Bonus BioGroup then separates the various types of cells and isolates the stem cells. The stem cells are removed and stimulated in a bioreactor, a special device that simulates the body’s environment and provides suitable conditions for bone generation. The fat cells are then grown in a lab until the tissue becomes solid, after which the hardened bone tissue is injected back into the patient’s body.

Bonus BioGroup CEO Dr. Shai Meretzki says in a video interview that “currently an autologous [cells or tissues obtained from the same individual] transplant is the gold standard for treating patients who lose bones for a wide variety of reasons. In order to perform the process you need to harvest the bone for one location within the body. Usually you cut from the femur and move it to the cut location, which is a very hard, expensive, painful and difficult process.”

“What we are offering instead is a completely new approach to patients who have lost their bones for the most disparate reasons, growing the old bone outside of the human body within a relatively short time,” Meretzki says.

The surgery to replace a missing 2 inches (5 centimeters) of Yaakobson’s tibia was performed last year at Afula’s Emek Medical Center led by Dr. Nimrod Rozen, Head of Orthopedics. In just three months following the procedure, Yaakobson was able to walk more comfortably and even jump.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Read more »

Israeli-Tech Brings AI To Read Medical Scans

By |

Israeli-Tech Brings AI To Read Medical Scans

Israeli Medtech startup Zebra Medical brings artificial intelligence (AI) to automatically detect brain anomalies. It’s like the optical character recognition (OCR) used to recognize words or other symbols when scanning a document. That’s basically how AI-based algorithm works to detect brain bleeds.

The following content was first reported by

Israeli startup Zebra Medical Vision will begin deploying its revolutionary medical imaging AI solutions in one of Israel’s largest hospitals, Tel Aviv’s Ichilov, as well as with Clalit Health Services and Maccabi Healthcare Services – Israel’s largest and second-largest HMO, respectively. The three medical entities manage some 90 percent of patients in Israel, the company said in a statement.

Zebra Medical said it received government support through grants from the Israel Innovation Authority for these projects, but did not disclose financial details.

See related story on artificial intelligence.

The company, founded in 2014 by Eyal Toledano, Eyal Gura, and Elad Benjamin, uses AI to read medical scans and automatically detect anomalies. Through its innovative development and use of 11 different algorithms, Zebra Medical can identify visual symptoms for diseases such as breast cancer, osteoporosis, fatty liver, and conditions such as vertebral fractures, aneurysms, and brain bleeds.

At Ichilov, also known as the Tel Aviv Sourasky Medical Center, which runs Israel’s largest ER section, the technology will prioritize radiologists’ worklists by scanning entire queues and flagging those that need immediate attention, thereby allowing those with life-threatening issues to be attended to more quickly.

“Emergency room patients will have their cases prioritized by AI, and if a CT scan includes a brain bleed or if a chest x-ray contains an acute condition such as pneumothorax, the patient’s imaging scan will be prioritized and placed at the top of the radiologist’s list for review, leading to earlier initiation of treatment,”

wrote Eyal Gura, Zebra Medical Vision’s co-founder and CEO, in a post announcing the partnerships.

Women who are members of the Maccabi HMO and patients of its private medical centers, meanwhile, may undergo their annual mammography exams where both expert radiologists and AI algorithms review the scans. This is in a bid to increase chances of any cancer detection earlier, and reduce unnecessary biopsies and risks of misdiagnoses.

“Traditional Computer Assisted Diagnosis (CAD) technologies failed in the past by exposing too many false positives and we are hopeful that AI can bring new insight to the process of the ‘second-reading’ of scans,” Gura wrote.

At the Clalit HMO, Zebra will apply its technology to detect early signs of osteoporosis and heart disease in patients and alert physicians who can then apply preventative treatments.

Gura explains that the benefits will also apply to caregivers, who can work more effectively and quickly to provide care, and to the state which can manage a better healthcare budget and

“Every patient with an undetected acute condition such as brain bleed, pneumothorax, or other undetected conditions such as breast cancer, ends up (in the best case scenario) with more days hospitalized, requiring more expensive treatments, with more working days lost and a greater lack of productivity for his or her surrounding family and direct contacts,”

Gura wrote.

Gura said the company was “humbled by the opportunity” and remained
“committed to providing the best solutions to our local care providers”

“In 2020, the majority of the people around us, including our loved ones, will be impacted by the tools we are creating,” he said in the company statement. “There is nothing more satisfying than that for our team.”

The Israel Innovation Authority’s CEO Aharon Aharon said the government agency “believes digital health to be of imperative and strategic growth engine for the entire Israeli economy,” and that Zebra Medical Vision’s participation in the program “represents the flagship that will help[…] substantiate and promote digital health in Israel.”

Professor Ronni Gamzu, CEO of Tel Aviv Sourasky Medical Center, said: “As a global leading ER center, we put significant emphasis on being on the cutting edge in terms of technology solutions that will empower our team. We selected Zebra-Med’s AI solutions to help our team perform faster and better diagnostics and we are certain that hundreds of thousands of patients will benefit from this new technology.”

Zebra Medical has seven CE marks for its various algorithms and 510(k) FDA clearance for one of them. It has raised over $50 million in venture funding since it was established five years ago.

In 2017, Zebra Medical partnered with multinational tech giant Google to provide its algorithms on Google Cloud, so hospitals and medical professionals in the US can access the service for $1 per scan. The company says its data and research platform has already yielded AI imaging insights for millions of scans.

The award-winning company has also been recognized as particularly innovative by Business Insider, Forbes, and Fast Company.

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Read more »

Cannabis Oil Found To Drastically Reduce Autism Symptoms, According to New Israeli Study

By |

Cannabis Oil Found To Drastically Reduce Autism Symptoms, According to New Israeli Study

The more marijuana is put under the microscope, the more benefits become evident. The latest comes from an Israeli study showing that marijuana reduces symptoms in children suffering from Autism.

The remainder of this article was originally reported in

A new Israeli scientific study has shown that the use of medical cannabis in children under 18 diagnosed with autism spectrum disorders (ASD) can relieve common symptoms such as seizures, disruptive behaviors, depression, and restlessness.

ASD is a range of neurological disorders that affect communication, behavior, and social skills, and for which there is no specific treatment. According to the World Health Organization, it affects 1 in 160 children worldwide and over the past three decades, there has been a 3-fold increase in the number of children diagnosed, according to the study. Interventions often focus on intensive behavioral therapies that require high levels of care.

The Israeli study was conducted by researchers from Ben-Gurion University of the Negev (BGU) and the Soroka University Medical Center, among them Professor Raphael Mechoulam, the renown organic chemist who in 1964 was the first to identify cannabis’ THC compound, the chemical known for causing a “high.” Mechoulam is credited with laying the foundation for scientific research on cannabis and its use in modern medicine.

In the new study, titled “Real life Experience of Medical Cannabis Treatment in Autism: Analysis of Safety and Efficacy” and published in the scientific journal Nature…

researchers found that over 80 percent of the parents of the children in the study reported significant or moderate improvement in their child.

The treatment in the majority of the 188 child patients was based on cannabis oil containing 30 percent CBD (Cannabidiol, a non-psychoactive chemical produced by the cannabis plant) and 1.5 percent THC.

All the children in the study, ranging in age from under 5 to 18, were previously diagnosed with ASD by certified neurologist or psychiatrist, as required by Ministry of Health prior to the initiation of the cannabis-based treatment.

The patients were assessed before the cannabis oil treatment, after a month of treatment, and after six months of treatment.

After a month, with 179 patients, 58 patients (48.7 percent) reported significant improvement, 37 (31.1 percent) moderate improvement; 7 patients (5.9 percent) experienced side effects and 17 (14.3 percent) reported that the cannabis did not help them. The side effects they reported included sleepiness (1.6 percent), bad taste and smell of the oil (1.6 percent), restlessness (0.8 percent), reflux (0.8 percent) and lack of appetite (0.8 percent).

After six months, with 155 patients and 93 respondents to a follow-up questionnaire on the treatment, 30.1 percent reported significant improvement, 53.7 percent moderate improvement, 6.4 percent slight improvement, and 8.6 percent said that saw no change in their condition.

The patients also reported that after 6 months of treatment, their quality of life improved (66.8 percent) and 63.5 percent noted a more positive mood. There was also a marked improvement in the ability to dress and shower independent (42.9 percent) and sleep better (24.7 percent).

Learn more about Diane Israel. Also, see Diane Israel on LinkedIn.

Read more »